If it's not what You are looking for type in the equation solver your own equation and let us solve it.
490p^2-810=0
a = 490; b = 0; c = -810;
Δ = b2-4ac
Δ = 02-4·490·(-810)
Δ = 1587600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1587600}=1260$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1260}{2*490}=\frac{-1260}{980} =-1+2/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1260}{2*490}=\frac{1260}{980} =1+2/7 $
| 15a=6a=90 | | 574=28x | | 3x/3-7/4=7/12 | | 385=28x | | 4.5+1.6n=1.14 | | 4v-16=4 | | 7(f-87)=63 | | 72=3(d-59) | | `3(x+7)=-12` | | 2^2x+4=320 | | Y=r^2+12r+32 | | (3x+6)=(2x-5)+47 | | 5(c+7)=65 | | 3a/8-2=2a+9/5 | | 7+4r=27 | | 2u+16=80 | | −9/10w=−18 | | −910w=−18 | | 22+5f=72 | | x+(x*0.2)=1000 | | 8+5k=98 | | 96=24+6k | | 4(t-81)=32 | | 3(b+19)=99 | | 49=11-4(2a+7) | | F=1.8(k-273.15)+32. | | (1-t)²-4t(1-t)+t²=0 | | y2+4y–45= | | y2+4y–45=0 | | -47n-37=n-32 | | 8z2-68z=-32 | | Y=b^2+15b+56 |